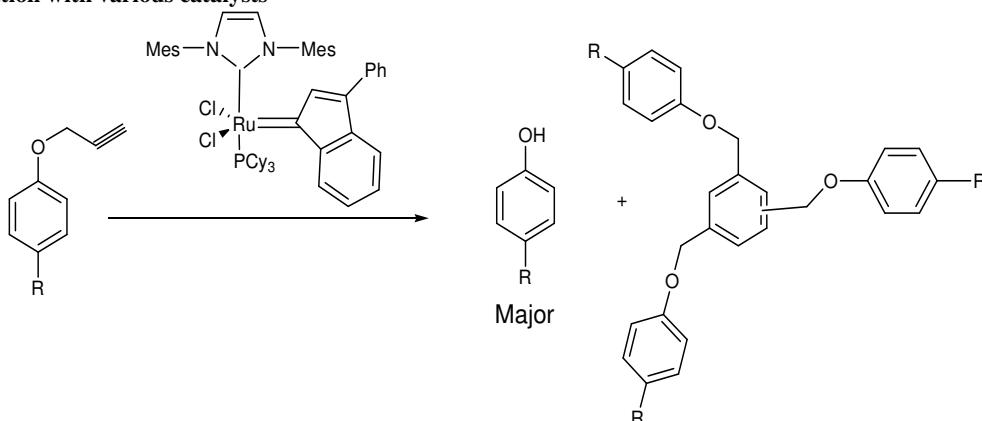


Indian Journal of Chemistry

Sect. B: Organic Chemistry including Medicinal Chemistry

VOL. 48B

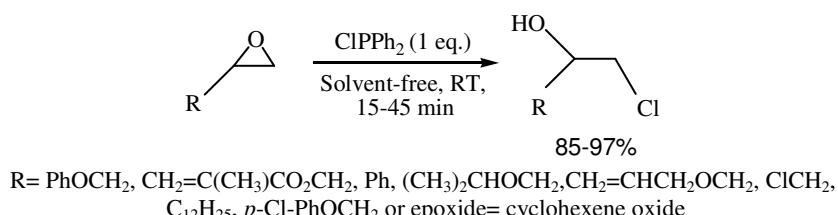

NUMBER 2

February 2009

CONTENTS

Rapid Communication

- 225 Synthesis of symmetrical and unsymmetrical trisubstituted benzene derivatives through ring-closing alkyne metathesis strategy and depoparylation with various catalysts

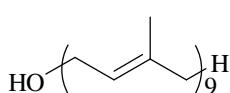
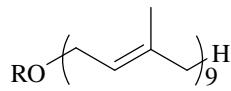
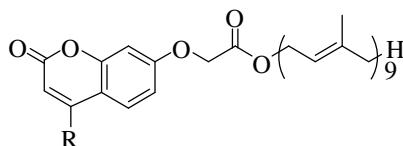
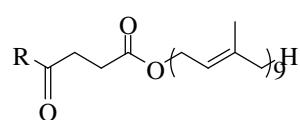

Sambasivarao Kotha*, Deepi Bansal & Ramanatham Vinod Kumar

Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India

Papers

- 231 Facile, high regio- and chemoselective conversion of epoxides to β -chlorohydrins using chlorodiphenylphosphine under solvent-free conditions

A new method is described for the mild and high regioselective conversion of epoxides to β -chlorohydrins in high yields even in the presence of alcohols, carboxylic acids, oximes, amides, thiols and tetrahydropyranyl ethers using chlorodiphenylphosphine (ClPPh_2) under solvent-free and neutral conditions at room temperature and in short reaction times. In addition, some other functional groups such as carbon-carbon double bonds, ester groups and also phenyl ring that are present in the epoxide molecules remain intact in this method.

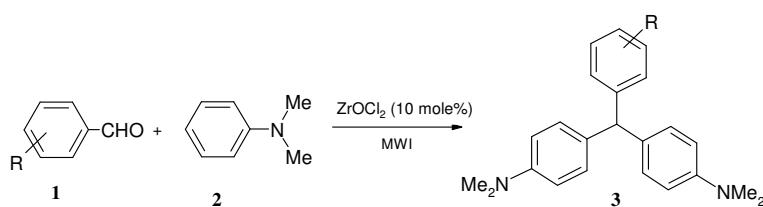
Ghasem Aghapour*, Asieh Afzali & Fahimeh Salek

School of Chemistry, Damghan University of Basic Sciences, Damghan, 3671641167, Iran

237 **Novel hybrid natural products derived from solanesol as wound healing agents**

A series of hybrid compounds **2a-g**, **3a,b**, **4a-n** have been synthesized from solanesol **1**, an acyclic terpenoid alcohol, extracted from tobacco waste. These compounds have been evaluated for antioxidant, angiogenesis and wound healing activity.

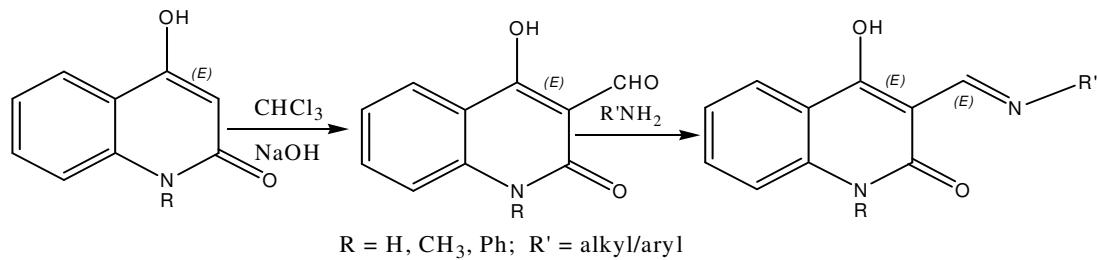
1**2****3****4**


Shefali Srivastava^a, Kanwal Raj^{*a}, Pratibha Khare^a, Amiya P Bhaduri^a & Ramesh Chander^b, Ram Raghbir^c, K Mahendra^d, C V Narsimha Rao^d & S R Prabhu^d

^aMedicinal Chemistry Division, ^bBiochemistry Division & ^cPharmacology Division, Central Drug Research Institute, Lucknow 226 001, India
and

^dCrop Chemistry and Soil Science Department, Central Tobacco Research Institute, Rajahmundry 533 105, India

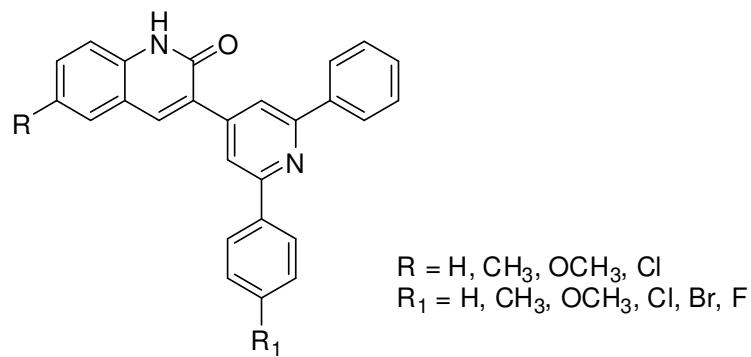
248 **ZrOCl₂ catalyzed Baeyer condensation: A facile and efficient synthesis of triarylmethanes under solvent-free conditions**


A facile and efficient synthesis of an array of triarylmethanes by the Baeyer condensation of different arylaldehydes carrying activated and deactivated groups and N,N-dimethylaniline using a catalytic amount of ZrOCl₂ under solvent-free microwave irradiation conditions is described. Further, the catalytic activity of ZrOCl₂ is compared with traditional Lewis acid catalysts and found that this synthetic method has the advantages of excellent yields (70-96%), shorter reaction time (few minutes) and solvent-free conditions.

Ch Sanjeeda Reddy*, A Nagaraj, A Srinivas & G Purnachandra Reddy

Department of Chemistry, Kakatiya University, Warangal 506 009, India

255 **Synthesis of 4-hydroxy-3-formylideneamino-1*H*/methyl/phenylquinolin-2-ones**

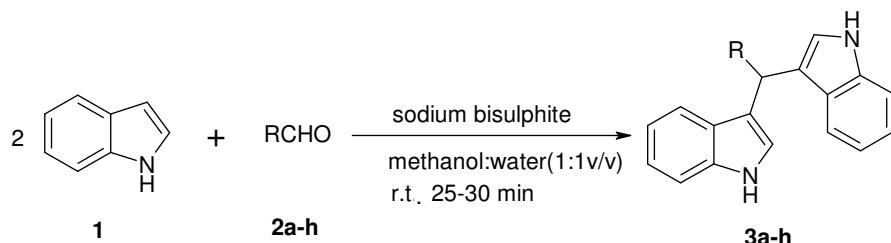


B Bhudevi, P Venkata Ramana, Anwita Mudiraj & A Ram Reddy*

Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India

261 **A convenient one-pot synthesis of series of 3-(2,6-diphenyl-4-pyridyl)hydroquinolin-2-one under microwave irradiation and their antimicrobial activities**

A series of 3-(2,6-diphenyl-4-pyridyl) hydroquinolin-2-ones **4a-x** are synthesized in high yields by one pot cyclo-condensation reactions under Krohnke's reaction conditions using 2-chloro-3-formyl quinoline **1a-d** various acetophenone **2a-f**, *N*-phenacyl- pyridinium chloride **3** in the mixture of ammonium acetate and acetic acid by microwave irradiation.



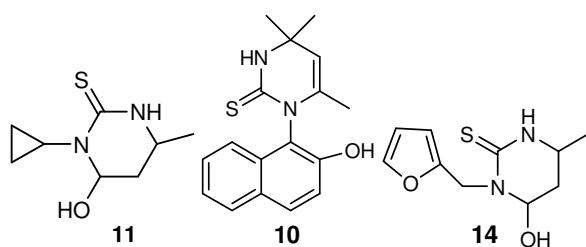
Niraj K Ladani, Manish P Patel & Ranjan G Patel*

Department of Chemistry, S P University, Vallabh Vidyanagar 388 120, India

267 **Synthesis, analgesic and anti-inflammatory activities of bis(indolyl)methanes**

A series of bis(indolyl)methanes have been synthesized by stirring a mixture of indole and aldehydes in methanol:water (1:1 v/v) containing catalytic amount of sodium bisulphite at RT. Acute toxicity, analgesic, anti-inflammatory and ulcerogenic activities of the prepared bis(indolyl)methanes are evaluated *in vivo* in comparison to standard drugs (ibuprofen and indomethacin). In acute toxicity study, no mortality is observed in the tested compounds and compound **3c** is found to be safe. All the tested compounds show significant analgesic and anti-inflammatory activity without an ulcerogenic activity. The most active compounds of this series are **3c** and **3d**.

Kuppusamy Sujatha^a, Paramasivan T Perumal,^{b,*} Doraisamy Muralidharan^b & Melani Rajendran^c


^aSri Ramachandra College of Pharmacy, Sri Ramachandra University, Porur, Chennai 600 116, India

^bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India.

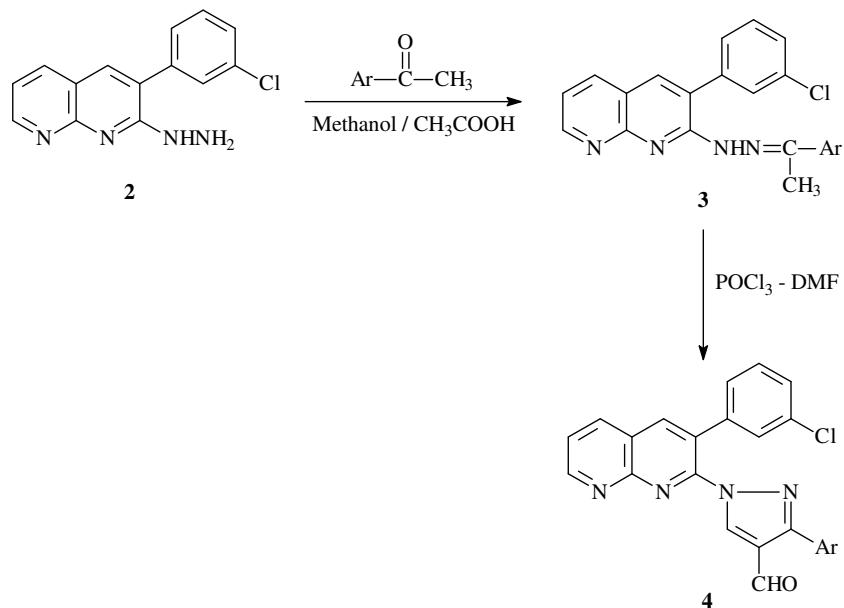
^cDepartment of Anatomy, Sri Ramachandra University, Porur, Chennai 600 116, India

273 **Synthesis, anti-inflammatory and analgesic activity evaluation of some pyrimidine derivatives**

A number of pyrimidine derivatives are synthesized. These compounds are screened for anti-inflammatory and analgesic activities. Compounds **10** and **14** exhibited good anti-inflammatory activity and compound **11** showed analgesic activity comparable to standard drug ibuprofen.

Sham M Sondhi^{a,*}, Monica Dinodia^a, Reshma Rani^a, Rakesh Shukla^b & Ram Raghbir^b

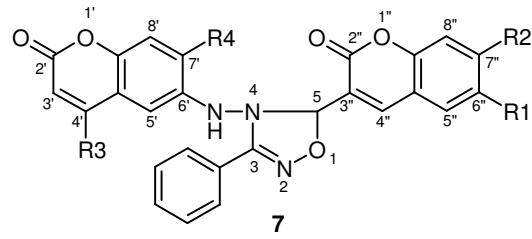
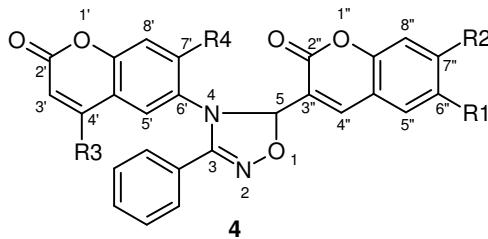
^aDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India


^bDepartment of Pharmacology, Central Drug Research Institute, Lucknow 226 001, India

Notes

282

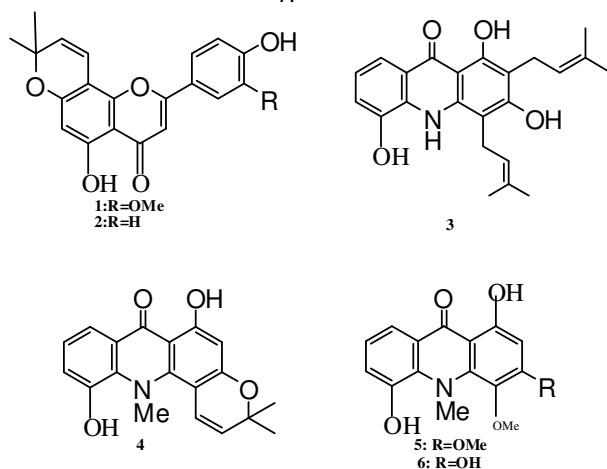
Synthesis and antibacterial activity of 3-aryl-4-formyl-1-[3-(3-chlorophenyl)-1,8-naphthyridin-2-yl]pyrazoles



Synthesis of 3-aryl-4-formyl-1-[3-(3-chlorophenyl)-1,8-naphthyridin-2-yl]pyrazoles **4** have been achieved by the reaction of acetophenone 3-(3-chlorophenyl)-1,8-naphthyridin-2-ylhydrazones **3** with Vilsmeier-Haack reagent (POCl_3 -DMF). The compounds **4** have been screened for their antibacterial activity.

K Mogilaiah*, K Vidya, S Kavitha & K Shiva Kumar

Department of Chemistry, Kakatiya University, Warangal 506 009, India

286

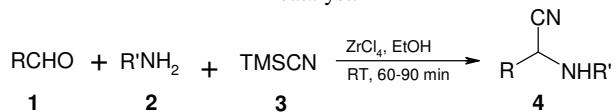

Synthesis of biologically active 4-coumarin-6-yl(amino)-5-coumarin-3-yl-3-phenyl-1,2,4-oxadiazolines

Sanket P Chaudhari & Nandini R Pai*

Department of Chemistry, D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai 400 016, India

291 Flavones and acridones from *Atalantia wightii* ^a

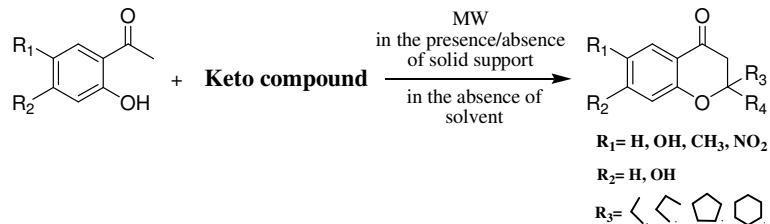
Two flavones racemoflavone **1** and atalantoflavone **2** and four acridones atalaphylline **3**, 5-hydroxynoracronycin **4**, citrusinine-I **5** and citrusinine-II **6** are isolated and identified from *Atalantia wightii* (leaves) along with a triterpene epi-friedlinol **7**.



Satish Kumar, Kanwal Raj* & Pratibha Khare

Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow, 226 001, India

295 ZrCl₄ promoted efficient one-pot synthesis of α -amino nitriles


A convenient and efficient one-pot method for the synthesis of a variety of α -amino nitriles from aldehydes, amines and trimethylsilyl cyanide in the presence of a catalytic amount of ZrCl₄ at room temperature is described using non-toxic catalyst.

M Raghu & Ch Sanjeeda Reddy*

Department of Chemistry, Kakatiya University, Warangal 506 009, India

301 Microwave assisted facile and efficient synthesis of benzopyran

A K Tripathi*, S Koul & S C Taneja

Bio-Organic Chemistry Section, Indian Institute of Integrative Medicines, (formerly Regional Research Laboratory, CSIR), Jammu 180 001, India

Authors for correspondence are indicated by (*)